2,803 research outputs found

    Too Much to Lose, or More to Gain? Should Sweden Join the Euro?

    Get PDF
    This paper considers the costs and benefits of Sweden joining the European Economic and Monetary Union (EMU). We pay particular attention to the costs of abandoning the krona in terms of a loss of monetary policy independence. For this purpose, we apply a cointegrated VAR framework to examine the degree of monetary independence that the Sveriges Riksbank enjoys. Our results suggest that Sweden has in fact relatively little to lose from joining EMU, at least in terms of monetary independence. We complement our analysis by looking into other criteria affecting the cost-benefit calculus of monetary integration, which, by and large, support our positive assessment of Swedish EMU membership

    Chinese Monetary Policy and the Dollar Peg

    Get PDF
    This paper investigates to what extent Chinese monetary policy is constrained by the dollar peg. To this end, we use a cointegration framework to examine whether Chinese interest rates are driven by the Fed's policy. In a second step, we estimate a monetary model for China, in which we include also other monetary policy tools besides the central bank interest rate, namely reserve requirement ratios and open market operations. Our results suggest China has been relatively successful in isolating its monetary policy from the US policy and that the interest rate tool has not been effectively made use of. We therefore conclude that by employing capital controls and relying on other instruments than the interest rate China has been able to exert relatively autonomous monetary policy

    Nonequilibrium phonon mean free paths in anharmonic chains

    Full text link
    Harnessing the power of low-dimensional materials in thermal applications calls for a solid understanding of the anomalous thermal properties of such systems. We analyze thermal conduction in one-dimensional systems by determining the frequency-dependent phonon mean free paths (MFPs) for an anharmonic chain, delivering insight into the diverging thermal conductivity observed in computer simulations. In our approach, the MFPs are extracted from the length-dependence of the spectral heat current obtained from nonequilibrium molecular dynamics simulations. At low frequencies, the results reveal a power-law dependence of the MFPs on frequency, in agreement with the diverging conductivity and the recently determined equilibrium MFPs. At higher frequencies, however, the nonequilibrium MFPs consistently exceed the equilibrium MFPs, highlighting the differences between the two quantities. Exerting pressure on the chain is shown to suppress the mean free paths and to generate a weaker divergence of MFPs at low frequencies. The results deliver important insight into anomalous thermal conduction in low-dimensional systems and also reveal differences between the MFPs obtained from equilibrium and nonequilibrium simulations.Comment: 8 pages, 7 figures, minor changes to v

    Role of anharmonic phonon scattering in the spectrally decomposed thermal conductance at planar interfaces

    Full text link
    Detailed understanding of vibrational heat transfer mechanisms between solids is essential for the efficient thermal engineering and control of nanomaterials. We investigate the frequency dependence of anharmonic scattering and interfacial thermal conduction between two acoustically mismatched solids in planar contact by calculating the spectral decomposition of the heat current flowing through an interface between two materials. The calculations are based on analyzing the correlations of atomic vibrations using the data extracted from non-equilibrium molecular dynamics simulations. Inelastic effects arising from anharmonic interactions are shown to significantly facilitate heat transfer between two mass-mismatched face-centered cubic lattices even at frequencies exceeding the cut-off frequency of the heavier material due to (i) enhanced dissipation of evanescent vibrational modes and (ii) frequency-doubling and frequency-halving three-phonon energy transfer processes at the interface. The results provide substantial insight into interfacial energy transfer mechanisms especially at high temperatures, where inelastic effects become important and other computational methods are ineffective.Comment: minor changes to v

    Feshbach blockade: single-photon nonlinear optics using resonantly enhanced cavity-polariton scattering from biexciton states

    Full text link
    We theoretically demonstrate how the resonant coupling between a pair of cavity-polaritons and a biexciton state can lead to a large single-photon Kerr nonlinearity in a semiconductor solid-state system. A fully analytical model of the scattering process between a pair of cavity-polaritons is developed, which explicitly includes the biexcitonic intermediate state. A dramatic enhancement of the polariton-polariton interactions is predicted in the vicinity of the biexciton Feshbach resonance. Application to the generation of non-classical light from polariton dots is discussed

    A common distributed language approach to software integration

    Get PDF
    An important objective in software integration is the development of techniques to allow programs written in different languages to function together. Several approaches are discussed toward achieving this objective and the Common Distributed Language Approach is presented as the approach of choice

    Transforming AdaPT to Ada

    Get PDF
    This paper describes how the main features of the proposed Ada language extensions intended to support distribution, and offered as possible solutions for Ada9X can be implemented by transformation into standard Ada83. We start by summarizing the features proposed in a paper (Gargaro et al, 1990) which constitutes the definition of the extensions. For convenience we have called the language in its modified form AdaPT which might be interpreted as Ada with partitions. These features were carefully chosen to provide support for the construction of executable modules for execution in nodes of a network of loosely coupled computers, but flexibly configurable for different network architectures and for recovery following failure, or adapting to mode changes. The intention in their design was to provide extensions which would not impact adversely on the normal use of Ada, and would fit well in style and feel with the existing standard. We begin by summarizing the features introduced in AdaPT

    Programming in a proposed 9X distributed Ada

    Get PDF
    The studies of the proposed Ada 9X constructs for distribution, now referred to as AdaPT are reported. The goals for this time period were to revise the chosen example scenario and to begin studying about how the proposed constructs might be implemented. The example scenario chosen is the Submarine Combat Information Center (CIC) developed by IBM for the Navy. The specification provided by IBM was preliminary and had several deficiencies. To address these problems, some changes to the scenario specification were made. Some of the more important changes include: (1) addition of a system database management function; (2) addition of a fourth processing unit to the standard resources; (3) addition of an operator console interface function; and (4) removal of the time synchronization function. To implement the CIC scenario in AdaPT, the decided strategy were publics, partitions, and nodes. The principle purpose for implementing the CIC scenario was to demonstrate how the AdaPT constructs interact with the program structure. While considering ways that the AdaPt constructs might be translated to Ada 83, it was observed that the partition construct could reasonably be modeled as an abstract data type. Although this gives a useful method of modeling partitions, it does not at all address the configuration aspects on the node construct
    corecore